Refine Your Search

Topic

Author

Search Results

Technical Paper

Effect of Engine Operating Parameters on Hydrocarbon Oxidation in the Exhaust Port and Runner of a Spark-Ignited Engine

1995-02-01
950159
The effect of engine operating parameters (speed, spark timing, and fuel-air equivalence ratio [Φ]) on hydrocarbon (HC) oxidation within the cylinder and exhaust system is examined using propane or isooctane fuel. Quench gas (CO2) is introduced at two locations in the exhaust system (exhaust valve or port exit) to stop the oxidation process. Increasing the speed from 1500 to 2500 RPM at MBT spark timing decreases the total, cylinder-exit HC emissions by ∼50% while oxidation in the exhaust system remains at 40% for both fuels. For propane fuel at 1500 rpm, increasing Φ from 0.9 (fuel lean) to 1.1 (fuel rich) reduces oxidation in the exhaust system from 42% to 26%; at 2500 RPM, exhaust system oxidation decreases from 40% to approximately 0% for Φ = 0.9 and 1.1, respectively. Retarded spark increases oxidation in the cylinder and exhaust system for both fuels. Decreases in total HC emissions are accompanied by increased olefinic content and atmospheric reactivity.
Technical Paper

Modeling of Engine-Out Hydrocarbon Emissions for Prototype Production Engines

1995-02-01
950984
A model has been developed which predicts engine-out hydrocarbon (HC) emissions for spark-ignition engines. The model consists of a set of scaling laws that describe the individual processes that contribute to HC emissions. The model inputs are the critical engine design and operating variables. This set of individual process scaling relations was then calibrated using production spark-ignition engine data at a fixed light-load operating point. The data base consisted of engine-out HC emissions from two-valve and four-valve engine designs with variations in spark timing, valve timing, coolant temperature, crevice volume, and EGR, for five different engines. The model was calibrated separately for the three different engines to accommodate differences in engine design details and to determine the relative magnitudes of each of the major sources. A good fit to this database was obtained.
Technical Paper

Extent of Oxidation of Hydrocarbons Desorbing from the Lubricant Oil Layer in Spark-ignition Engines

1996-02-01
960069
The extent of oxidation of hydrocarbons desorbing from the oil layer has been measured directly in a hydrogen-fueled, spark-ignited engine in which the lubricant oil was doped with a single component hydrocarbon. The amount of hydrocarbon desorbed and oxidized could be measured simultaneously as the dopant was only source of carbon-containing species. The fraction oxidized was strongly dependent on engine load, hydrogen fuel-air ratio and dopant chemical reactivity, but only modestly dependent on spark timing and nitrogen dilution levels below 20 percent. Fast FID measurements at the cylinder exit showed that the surviving hydrocarbons emerge late in the exhaust stroke.
Technical Paper

Development of a Time and Space Resolved Sampling Probe Diagnostic for Engine Exhaust Hydrocarbons

1996-02-01
961002
In order to understand how unburned hydrocarbons emerge from SI engines and, in particular, how non-fuel hydrocarbons are formed and oxidized, a new gas sampling technique has been developed. A sampling unit, based on a combination of techniques used in the Fast Flame Ionization Detector (FFID) and wall-mounted sampling valves, was designed and built to capture a sample of exhaust gas during a specific period of the exhaust process and from a specific location within the exhaust port. The sampling unit consists of a transfer tube with one end in the exhaust port and the other connected to a three-way valve that leads, on one side, to a FFID and, on the other, to a vacuum chamber with a high-speed solenoid valve. Exhaust gas, drawn by the pressure drop into the vacuum chamber, impinges on the face of the solenoid valve and flows radially outward.
Technical Paper

Time-Resolved, Speciated Emissions from an SI Engine During Starting and Warm-Up

1996-10-01
961955
A sampling system was developed to measure the evolution of the speciated hydrocarbon emissions from a single-cylinder SI engine in a simulated starting and warm-up procedure. A sequence of exhaust samples was drawn and stored for gas chromatograph analysis. The individual sampling aperture was set at 0.13 s which corresponds to ∼ 1 cycle at 900 rpm. The positions of the apertures (in time) were controlled by a computer and were spaced appropriately to capture the warm-up process. The time resolution was of the order of 1 to 2 cycles (at 900 rpm). Results for four different fuels are reported: n-pentane/iso-octane mixture at volume ratio of 20/80 to study the effect of a light fuel component in the mixture; n-decane/iso-octane mixture at 10/90 to study the effect of a heavy fuel component in the mixture; m-xylene and iso-octane at 25/75 to study the effect of an aromatics in the mixture; and a calibration gasoline.
Technical Paper

Measurement of Gasoline Absorption into Engine Lubricating Oil

1996-05-01
961229
A method to collect and speciate the components of gasoline absorbed in the lubricant oil using gas chromatography has been developed. Samples were collected continuously from the piston skirt, baffle and sump in a Saturn engine. A long (18 hours) test was performed to determine the build up of hydrocarbons in the sump, and a shorter (25 min) test was performed to determine the build up of hydrocarbons in the piston skirt and baffle during engine warm-up. The first experiment showed that the total hydrocarbon concentration in the sump oil reached a steady state of about 1.35% mass fraction after 11 hours of engine operation. The relative concentration of individual fuel hydrocarbon species absorbed in the oil increases exponentially with boiling point. Most of the identified species in the oil consist of the heavy end aromatics. Similar compositions but lower concentrations were found for samples collected from the piston skirt during engine warm-up.
Technical Paper

Numerical Simulation of Post-Flame Oxidation of Hydrocarbons in Spark Ignition Engines

1997-02-24
970886
About 50-90 percent of the hydrocarbons that escape combustion during flame passage in spark-ignition engine operation are oxidized in the cylinder before leaving the system. The process involves the transport of unreacted fuel from cold walls towards the hotter burned gas regions and subsequent reaction. In order to understand controlling factors in the process, a transient one-dimensional reactive-diffusive model has been formulated for simulating the oxidation processes taking place in the reactive layer between hot burned gases and cold unreacted air/fuel mixture, with initial and boundary conditions provided by the emergence of hydrocarbons from the piston top land crevice. Energy and species conservation equations are solved for the entire process, using a detailed chemical kinetic mechanism for propane.
Technical Paper

The Mars Gravity Biosatellite: Innovations in Murine Motion Analysis and Life Support

2005-07-11
2005-01-2788
The MIT-based Mars Gravity Biosatellite payload engineering team has been engaged in designing and prototyping sensor and control systems for deployment within the rodent housing zone of the satellite, including novel video processing and atmospheric management tools. The video module will be a fully autonomous real-time analysis system that takes raw video footage of the specimen mice as input and distills those parameters which are of primary physiological importance from a scientific research perspective. Such signals include activity level, average velocity and rearing behavior, all of which will serve as indicators of animal health and vestibular function within the artificial gravity environment. Unlike raw video, these parameters require minimal storage space and can be readily transmitted to earth over a radio link of very low bandwidth.
Technical Paper

A Modeling Investigation into the Optimal Intake and Exhaust Valve Event Duration and Timing for a Homogenous Charge Compression Ignition Engine

2005-10-24
2005-01-3746
Homogenous Charge Compression Ignition (HCCI) engine operation has been demonstrated using both residual trapping and residual re-induction. A number of production valve train technologies can accomplish either of these HCCI modes of operation. Wide-scale testing of the many valve timing and duration options for an HCCI engine is both time and cost prohibitive, thus a modeling study was pursued to investigate optimal HCCI valve-train designs using the geometry of a conventional gasoline Port-Fuel-Injected (PFI) Spark-Ignition (SI) engine. A commercially available engine simulation program (WAVE), as well as chemical kinetic combustion modeling tools were used to predict the best approaches to achieving combustion across a wide variety of valve event durations and timings. The results of this study are consistent with experimental results reported in the literature: both residual trapping and residual re-induction are possible strategies for HCCI combustion.
Technical Paper

Fast Sampling Valve Measurements of Hydrocarbons in the Cylinder of a CFR Engine

1981-02-01
810149
A time resolved study of the unhurned hydrocarbons in the cylinder of a spark ignition engine has been made. A fast acting needle value was used to sample the gas near the cylinder wall opposite the spark plug. The volume sampled was measured by water displacement and the total hydrocarbon mole fraction was measured with a flame ionization detector. Measurements were made as a function of crank angle over the entire engine cycle for a range of equivalence ratios, inlet pressures, spark advances, inlet temperatures, and EGR fractions. Average hydrocarbon concentrations in the exhaust were also measured. Two possible sources of post combustion hydrocarbon in the cylinder were considered: thin wall quench layers and fine crevices into which a flame cannot propagate. The results suggest that crevices were the source of the hydrocarbon. Models for predicting hydrocarbon from both quench layers and crevices were developed and are presented.
Technical Paper

Time-Resolved Measurements of Hydrocarbon Mass Flowrate in the Exhaust of a Spark-Ignition Engine

1972-02-01
720112
Experimental measurements of the instantaneous exhaust gas temperature, mass flowrate, and hydrocarbon concentration have been made in the exhaust of a single cylinder research engine. The temperature measurements were accomplished using an infrared optical technique and observing the radiation of the exhaust gas at the 4.4 μm band of CO2. Instantaneous exhaust gas mass flowrates were monitored by placing a restriction in the exhaust manifold and measuring the instantaneous pressures across the restriction. Time-resolved hydrocarbon concentrations were measured using a fast-acting sampling valve with an open time of 2 ms. From these measurements, the hydrocarbon mass flowrate is calculated as a function of crank angle.
Technical Paper

Time Resolved Measurements of Exhaust Composition and Flow Rate in a Wankel Engine

1975-02-01
750024
Measurements were made of exhaust histories of the following species: unburned hydrocarbons (HC), carbon monoxide, carbon dioxide, oxygen, and nitric oxide (NO). The measurements show that the exhaust flow can be divided into two distinct phases: a leading gas low in HC and high in NO followed by a trailing gas high in HC and low in NO. Calculations of time resolved equivalence ratio throughout the exhaust process show no evidence of a stratified combustion. The exhaust mass flow rate is time resolved by forcing the flow to be locally quasi-steady at an orifice placed in the exhaust pipe. The results with the quasi-steady assumption are shown to be consistent with the measurements. Predictions are made of time resolved mass flow rate which compare favorably to the experimental data base. The composition and flow histories provide sufficient information to calculate the time resolved flow rates of the individual species measured.
Technical Paper

LOOP SCAVENGING versus THROUGH SCAVENGING of TWO-STROKE ENGINES

1958-01-01
580044
THIS paper reports the latest investigation of the relative merits of loop scavenging versus through scavenging. The authors hope that the conditions of the work permitted an objective evaluation of the two types of engines. The results of the study may be summarized as follows: 1. With symmetrical timing, neither cylinder shows significant advantage in trapping efficiency. 2. With symmetrical timing, the best ratio of exhaust-port to inlet-port effective area seems to be about 0.6. 3. Unsymmetrical timing is an effective method of improving trapping efficiency. 4. The value of net indicated fuel economy shows no significant difference between the two cylinders. The authors point out that because the areas were equal it is unlikely that the optimum port design of each type was used in comparing the cylinders. If optimum porting had been used, the two types might have shown more difference.
Technical Paper

Analysis of Hydrocarbon Emissions Mechanisms in a Direct Injection Spark-Ignition Engine

1983-02-01
830587
The direct injection spark-ignition engine is the only internal combustion engine with the potential to equal the efficiency of the diesel and to tolerate a wide range of fuel types and fuel qualities without deterioration of performance. However, this engine has low combustion efficiency and excessive hydrocarbon emissions when operating at light load. In this paper, potential sources of hydrocarbon emissions during light load operation are postulated and analyzed. The placement of fuel away from the primary combustion process in conjunction with a lack of secondary burnup are isolated as important hydrocarbon emissions mechanisms. Analyses show that increasing cylinder gas temperatures can improve secondary burnup of fuel which would reduce hydrocarbon emissions. Practical means to achieve this include higher compression ratio and use of ceramic parts in the combustion chamber.
Technical Paper

A Model of Quench Layer Entrainment During Blowdown and Exhaust of the Cylinder of an Internal Combustion Engine

1975-02-01
750477
An aerodynamic model of the entrainment of the head wall quench layer during blowdown and exhaust of an internal combustion engine has been developed. The model may be used to calculate the time resolved concentration and mass flowrate of hydrocarbons (HC) in the exhaust, from a knowledge of engine geometry and operating conditions. It predicts that the area As from which HC are swept will be proportional to the cube root of the ratio of the quench layer thickness δq to the thickness of the viscous boundary layer δv. Since the mass of HC emitted is proportional to the product of the HC density ρHC, the area As and the thickness δq, the HC emissions will be proportional to the product ρHC δq4/3 and this is the most important factor determining the emissions.
Technical Paper

Scavenging the 2-Stroke Engine

1954-01-01
540258
THE indicated output of a 2-stroke engine is primarily dependent upon the success with which the products of combustion are driven from the cylinder and are replaced by fresh air or mixture during the scavenging period. Such replacement must, of course, be accomplished with a minimum of blower power. This paper deals with various aspects of 2-stroke research conducted at M.I.T. during the past 10 years. Among the subjects discussed are the methods used in the prediction and measurement of scavenging efficiency, and the effect of engine design and operating variables on the scavenging blower requirements as reflected by the scavenging ratio.
Technical Paper

Mixture Preparation in a SI Engine with Port Fuel Injection During Starting and Warm-Up

1992-10-01
922170
The in-cylinder hydrocarbon (HC) mole fraction was measured on a cycle-resolved basis during simulated starting and warm-up of a port-injected single-cylinder SI research engine on a dynamometer. The measurements were made with a fast-response flame ionization detector with a heated sample line. The primary parameters that influence how rapidly a combustible mixture builds up in the cylinder are the inlet pressure and the amount of fuel injected; engine speed and fuel injection schedule have smaller effects. When a significant amount of liquid fuel is present at the intake port in the starting process, the first substantial firing cycle is often preceded by a cycle with abnormally high in-cylinder HC and low compression pressure. An energy balance analysis suggests that a large amount of liquid vaporization occurs within the cylinder in this cycle.
Technical Paper

Detailed Calculation of Heating, Evaporation, and Reaction Processes of a Thin Liquid Layer of Hydrocarbon Fuel

2000-03-06
2000-01-0959
A one-dimensional model has been developed for the species and energy transfer over a thin (0.1-0.5 mm) layer of liquid fuel present on the wall of a spark-ignition engine. Time-varying boundary conditions during compression and flame passage were used to determine the rate of methanol vaporization and oxidation over a mid-speed, mid-load cycle, as a function of wall temperature. The heat of vaporization and the boiling point of the fuel were varied about a baseline to determine the effect of these characteristics, at a fixed operating point and lean conditions (ϕ = 0.9). The calculations show that the evaporation of fuels from layers on cold walls starts during flame passage, peaking a few milliseconds later, and continuing through the exhaust phase.
Technical Paper

Effect of Operating Conditions and Fuel Type on Crevice HC Emissions: Model Results and Comparison with Experiments

1999-10-25
1999-01-3578
A one-dimensional model for crevice HC post-flame oxidation is used to calculate and understand the effect of operating parameters and fuel type (propane and isooctane) on the extent of crevice hydrocarbon and the product distribution in the post flame environment. The calculations show that the main parameters controlling oxidation are: bulk burned gas temperatures, wall temperatures, turbulent diffusivity, and fuel oxidation rates. Calculated extents of oxidation agree well with experimental values, and the sensitivities to operating conditions (wall temperatures, equivalence ratio, fuel type) are reasonably well captured. Whereas the bulk gas temperatures largely determine the extent of oxidation, the hydrocarbon product distribution is not very much affected by the burned gas temperatures, but mostly by diffusion rates. Uncertainties in both turbulent diffusion rates as well as in mechanisms are an important factor limiting the predictive capabilities of the model.
Technical Paper

Continuous Particulate Filter State of Health Monitoring Using Radio Frequency Sensing

2018-04-03
2018-01-1260
Reliable means for on-board detection of particulate filter failures or malfunctions are needed to meet diagnostics (OBD) requirements. Detecting these failures, which result in tailpipe particulate matter (PM) emissions exceeding the OBD limit, over all operating conditions is challenging. Current approaches employ differential pressure sensors and downstream PM sensors, in combination with particulate filter and engine-out soot models. These conventional monitors typically operate over narrowly-defined time windows and do not provide a direct measure of the filter’s state of health. In contrast, radio frequency (RF) sensors, which transmit a wireless signal through the filter substrate provide a direct means for interrogating the condition of the filter itself.
X